Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Mol Genet Metab ; 142(2): 108488, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38735264

RESUMEN

INTRODUCTION: Fucokinase deficiency-related congenital disorder of glycosylation (FCSK-CDG) is a rare autosomal recessive inborn error of metabolism characterized by a decreased flux through the salvage pathway of GDP-fucose biosynthesis due to a block in the recycling of L-fucose that exits the lysosome. FCSK-CDG has been described in 5 individuals to date in the medical literature, with a phenotype comprising global developmental delays/intellectual disability, hypotonia, abnormal myelination, posterior ocular disease, growth and feeding failure, immune deficiency, and chronic diarrhea, without clear therapeutic recommendations. PATIENT AND METHODS: In a so far unreported FCSK-CDG patient, we studied proteomics and glycoproteomics in vitro in patient-derived fibroblasts and also performed in vivo glycomics, before and after treatment with either D-Mannose or L-Fucose. RESULTS: We observed a marked increase in fucosylation after D-mannose supplementation in fibroblasts compared to treatment with L-Fucose. The patient was then treated with D-mannose at 850 mg/kg/d, with resolution of the chronic diarrhea, resolution of oral aversion, improved weight gain, and observed developmental gains. Serum N-glycan profiles showed an improvement in the abundance of fucosylated glycans after treatment. No treatment-attributed adverse effects were observed. CONCLUSION: D-mannose is a promising new treatment for FCSK-CDG.

2.
bioRxiv ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38585903

RESUMEN

GABAergic interneuron deficits have been implicated in the epileptogenesis of multiple neurological diseases. While epileptic seizures are a key clinical hallmark of CLN2 disease, a childhood-onset neurodegenerative lysosomal storage disorder caused by a deficiency of tripeptidyl peptidase 1 (TPP1), the etiology of these seizures remains elusive. Given that Cln2 R207X/R207X mice display fatal spontaneous seizures and an early loss of several cortical interneuron populations, we hypothesized that those two events might be causally related. To address this hypothesis, we first generated an inducible transgenic mouse expressing lysosomal membrane-tethered TPP1 (TPP1LAMP1) on the Cln2 R207X/R207X genetic background to study the cell-autonomous effects of cell-type-specific TPP1 deficiency. We crossed the TPP1LAMP1 mice with Vgat-Cre mice to introduce interneuron-specific TPP1 deficiency. Vgat-Cre ; TPP1LAMP1 mice displayed storage material accumulation in several interneuron populations both in cortex and striatum, and increased susceptibility to die after PTZ-induced seizures. Secondly, to test the role of GABAergic interneuron activity in seizure progression, we selectively activated these cells in Cln2 R207X/R207X mice using Designer Receptor Exclusively Activated by Designer Drugs (DREADDs) in in Vgat-Cre : Cln2 R207X/R207X mice. EEG monitoring revealed that DREADD-mediated activation of interneurons via chronic deschloroclozapine administration accelerated the onset of spontaneous seizures and seizure-associated death in Vgat-Cre : Cln2 R207X/R207X mice, suggesting that modulating interneuron activity can exert influence over epileptiform abnormalities in CLN2 disease. Taken together, these results provide new mechanistic insights into the underlying etiology of seizures and premature death that characterize CLN2 disease.

3.
Mol Genet Metab Rep ; 38: 101036, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38173710

RESUMEN

Vascular involvement in the genetic disorder mucopolysaccharidosis type I (MPS I) has features of atherosclerotic disease near branch points of arterial vasculature, such as intimal thickening with disruption of the internal elastic lamina, and proliferation of macrophages and myofibroblasts. Inflammatory pathways are implicated in the pathogenesis of vascular disease in MPS I animal models, evidenced by cytokines like CD18 and TGF-ß within arterial plaques. The angiotensin II-mediated inflammatory pathway is well studied in human atherosclerotic coronary artery disease. Recent work indicates treatment with the angiotensin receptor blocker losartan may improve vascular MPS I disease in mouse models. Here, we combined losartan with the standard therapy for MPS I, enzyme replacement therapy (ERT), to measure effects on cytokines in serum and aortic vasculature. Each treatment group (losartan, ERT, and their combination) equally normalized levels of cytokines that were largely differential between normal and mutant mice. Some cytokines, notably CD30 ligand, Eotaxin-2, LIX, IL-13, IL-15, GM-CSF, MCP-5, MIG, and CCL3 showed elevations in mice treated with ERT above normal or mutant levels; these elevations were reduced or absent in mice that received losartan or combination therapy. The observations suggest that losartan may impact inflammatory cascades due to MPS I and may also blunt inflammation in combination with ERT.

4.
JIMD Rep ; 64(4): 261-264, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37404675

RESUMEN

Very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is an autosomal recessive long chain fatty acid ß-oxidation disorder with a variable clinical spectrum, ranging from an acute neonatal presentation with cardiac and hepatic failure to childhood or adult onset of symptoms with hepatomegaly or rhabdomyolysis provoked by illness or exertion. Neonatal cardiac arrest or sudden unexpected death can be the presenting phenotype in some patients, emphasizing the importance of early clinical suspicion and intervention. We report a patient who had a cardiac arrest and died at one day of age. Following her death, the newborn screen reported biochemical evidence of VLCAD deficiency, which was confirmed with pathologic findings at autopsy and by molecular genetic testing.

5.
Neurol Genet ; 8(6): e200036, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36524104

RESUMEN

Objectives: Cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS) results from biallelic intronic pentanucleotide repeats in RFC1. We describe an adult male proband with progressive imbalance, cerebellar atrophy, somatosensory neuronopathy, and absence of peripheral vestibular function for whom clinical testing demonstrated a heterozygous RFC1 expansion consistent with an unaffected carrier. Methods: We performed whole-genome sequencing (WGS) on peripheral blood DNA samples from the proband and his unaffected mother. We performed DNA long-read sequencing and synthesized complementary DNA from RNA using peripheral blood from the proband. Results: WGS confirmed the maternally inherited RFC1 expansion and identified a rare, nonsense RFC1 variant: c.C1147T; p.R383X in the proband but not the maternal DNA sample. RFC1 variants were confirmed in trans with long-read sequencing. Functional studies demonstrated the absence of complementary DNA (cDNA) transcript from the c.C1147T; p.R383X variant supporting nonsense-mediated decay of this transcript. Discussion: We report an adult with CANVAS due to compound heterozygous pathogenic RFC1 variants: the pathogenic intronic pentanucleotide expansion confirmed in trans with a nonsense variant. This report represents a novel molecular mechanism for CANVAS. Sequencing for RFC1 should be considered for adults meeting clinical criteria for the CANVAS phenotype if only a heterozygous pathogenic RFC1 expansion is identified.

6.
Mol Ther Methods Clin Dev ; 27: 452-463, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36419468

RESUMEN

Sanfilippo syndrome type B (mucopolysaccharidosis type IIIB) is a recessive genetic disorder that severely affects the brain due to a deficiency in the enzyme α-N-acetylglucosaminidase (NAGLU), leading to intra-lysosomal accumulation of partially degraded heparan sulfate. There are no effective treatments for this disorder. In this project, we carried out an ex vivo correction of neural stem cells derived from Naglu -/- mice (iNSCs) induced pluripotent stem cells (iPSC) using a modified enzyme in which human NAGLU is fused to an insulin-like growth factor II receptor binding peptide in order to improve enzyme uptake. After brain transplantation of corrected iNSCs into Naglu -/- mice and long-term evaluation of their impact, we successfully detected NAGLU-IGFII activity in all transplanted animals. We found decreased lysosomal accumulation and reduced astrocytosis and microglial activation throughout transplanted brains. We also identified a novel neuropathological phenotype in untreated Naglu -/- brains with decreased levels of the neuronal marker Map2 and accumulation of synaptophysin-positive aggregates. Upon transplantation, we restored levels of Map2 expression and significantly reduced formation of synaptophysin-positive aggregates. Our findings suggest that genetically engineered iNSCs can be used to effectively deliver the missing enzyme to the brain and treat Sanfilippo type B-associated neuropathology.

7.
J Clin Invest ; 132(20)2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36040802

RESUMEN

CLN1 disease, also called infantile neuronal ceroid lipofuscinosis (NCL) or infantile Batten disease, is a fatal neurodegenerative lysosomal storage disorder resulting from mutations in the CLN1 gene encoding the soluble lysosomal enzyme palmitoyl-protein thioesterase 1 (PPT1). Therapies for CLN1 disease have proven challenging because of the aggressive disease course and the need to treat widespread areas of the brain and spinal cord. Indeed, gene therapy has proven less effective for CLN1 disease than for other similar lysosomal enzyme deficiencies. We therefore tested the efficacy of enzyme replacement therapy (ERT) by administering monthly infusions of recombinant human PPT1 (rhPPT1) to PPT1-deficient mice (Cln1-/-) and CLN1R151X sheep to assess how to potentially scale up for translation. In Cln1-/- mice, intracerebrovascular (i.c.v.) rhPPT1 delivery was the most effective route of administration, resulting in therapeutically relevant CNS levels of PPT1 activity. rhPPT1-treated mice had improved motor function, reduced disease-associated pathology, and diminished neuronal loss. In CLN1R151X sheep, i.c.v. infusions resulted in widespread rhPPT1 distribution and positive treatment effects measured by quantitative structural MRI and neuropathology. This study demonstrates the feasibility and therapeutic efficacy of i.c.v. rhPPT1 ERT. These findings represent a key step toward clinical testing of ERT in children with CLN1 disease and highlight the importance of a cross-species approach to developing a successful treatment strategy.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Animales , Niño , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático , Humanos , Ratones , Mutación , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Lipofuscinosis Ceroideas Neuronales/genética , Ovinos
8.
J Biol Chem ; 298(8): 102159, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35750212

RESUMEN

Lysosomal storage diseases result in various developmental and physiological complications, including cachexia. To study the causes for the negative energy balance associated with cachexia, we assessed the impact of sulfamidase deficiency and heparan sulfate storage on energy homeostasis and metabolism in a mouse model of type IIIa mucopolysaccharidosis (MPS IIIa, Sanfilippo A syndrome). At 12-weeks of age, MPS IIIa mice exhibited fasting and postprandial hypertriglyceridemia compared with wildtype mice, with a reduction of white and brown adipose tissues. Partitioning of dietary [3H]triolein showed a marked increase in intestinal uptake and secretion, whereas hepatic production and clearance of triglyceride-rich lipoproteins did not differ from wildtype controls. Uptake of dietary triolein was also elevated in brown adipose tissue (BAT), and notable increases in beige adipose tissue occurred, resulting in hyperthermia, hyperphagia, hyperdipsia, and increased energy expenditure. Furthermore, fasted MPS IIIa mice remained hyperthermic when subjected to low temperature but became cachexic and profoundly hypothermic when treated with a lipolytic inhibitor. We demonstrated that the reliance on increased lipid fueling of BAT was driven by a reduced ability to generate energy from stored lipids within the depot. These alterations arose from impaired autophagosome-lysosome fusion, resulting in increased mitochondria content in beige and BAT. Finally, we show that increased mitochondria content in BAT and postprandial dyslipidemia was partially reversed upon 5-week treatment with recombinant sulfamidase. We hypothesize that increased BAT activity and persistent increases in energy demand in MPS IIIa mice contribute to the negative energy balance observed in patients with MPS IIIa.


Asunto(s)
Hipertrigliceridemia , Mucopolisacaridosis III , Tejido Adiposo Pardo/metabolismo , Animales , Caquexia , Ratones , Mitofagia , Mucopolisacaridosis III/metabolismo , Mucopolisacaridosis III/terapia , Trioleína
9.
Eur J Med Genet ; 65(6): 104514, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35487415

RESUMEN

BACKGROUND: Congenital vertical talus (CVT), also known as "rocker-bottom foot", is a rare foot deformity associated with a dislocation of the talonavicular joint. Although genetic causes of CVT have been described in single isolated and syndromic families, whole-exome sequencing (WES) of large cohorts have not yet been reported. METHODS: In this study, 62 probands with CVT were evaluated for likely causative single nucleotide variants (SNVs) and copy number variants (CNVs) using WES. Segregation of variants within families was determined by Sanger sequencing. RESULTS: In this cohort, CVT occurred as an isolated anomaly in 75.8% (47/62) and was familial in 19.3% (12/62) of cases. Analysis of WES data led to the identification of likely causative variants in known disease genes in 30.6% (19/62) of all CVT probands. More than one proband had likely causative SNVs in TSHZ1, GDF5, and LMX1B. Only two probands had likely causative CNVs: a chromosome 12q13.13 deletion of the 5' HOXC gene cluster, and a chromosome 18q22.3q23 deletion involving TSHZ1. Familial CVT was strongly predictive of identifying a molecular diagnosis [75% (9/12) of familial cases compared to 20% (10/50) of non-familial cases (Chi-square test, P-value = 0.0002)]. There was no difference in the solved rate based on isolated or syndromic presentation, unilateral or bilateral affectation, or sex. CONCLUSIONS: CVT is genetically heterogeneous and more often caused by SNVs than CNVs. There is a high yield of WES in familial CVT cases (∼75%). Additional research is needed to identify the causes of sporadic CVT, which had much lower solved rates.


Asunto(s)
Pie Plano , Deleción Cromosómica , Variaciones en el Número de Copia de ADN , Exoma/genética , Humanos , Linaje , Secuenciación del Exoma
10.
Mol Genet Metab ; 134(4): 323-329, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34844863

RESUMEN

Sanfilippo D syndrome (mucopolysaccharidosis type IIID) is a lysosomal storage disorder caused by the deficiency of N-acetylglucosamine-6-sulfatase (GNS). A mouse model was generated by constitutive knockout of the Gns gene. We studied affected mice and controls at 12, 24, 36, and 48 weeks of age for neuropathological markers of disease in the somatosensory cortex, primary motor cortex, ventral posterior nuclei of the thalamus, striatum, hippocampus, and lateral and medial entorhinal cortex. We found significantly increased immunostaining for glial fibrillary associated protein (GFAP), CD68 (a marker of activated microglia), and lysosomal-associated membrane protein-1 (LAMP-1) in Sanfilippo D mice compared to controls at 12 weeks of age in all brain regions. Intergroup differences were marked for GFAP and CD68 staining, with levels in Sanfilippo D mice consistently above controls at all age groups. Intergroup differences in LAMP-1 staining were more pronounced in 12- and 24-week age groups compared to 36- and 48-week groups, as control animals showed some LAMP-1 staining at later timepoints in some brain regions. We also evaluated the somatosensory cortex, medial entorhinal cortex, reticular nucleus of the thalamus, medial amygdala, and hippocampal hilus for subunit c of mitochondrial ATP synthase (SCMAS). We found a progressive accumulation of SCMAS in most brain regions of Sanfilippo D mice compared to controls by 24 weeks of age. Cataloging the regional neuropathology of Sanfilippo D mice may aid in understanding the disease pathogenesis and designing preclinical studies to test brain-directed treatments.


Asunto(s)
Encéfalo/patología , Mucopolisacaridosis III/patología , Animales , Femenino , Gliosis/etiología , Proteínas de Membrana de los Lisosomas/análisis , Masculino , Ratones , Microglía/fisiología , ATPasas de Translocación de Protón Mitocondriales/análisis , Mucopolisacaridosis III/etiología , Mucopolisacaridosis III/metabolismo
11.
J Inherit Metab Dis ; 44(5): 1088-1098, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34189746

RESUMEN

Mucopolysaccharidoses type I (MPS I) is an inherited metabolic disease characterized by a malfunction of the α-l-iduronidase (IDUA) enzyme leading to the storage of glycosaminoglycans in the lysosomes. This disease has longtime been studied as a therapeutic target for those studying gene therapy and many studies have been done using various vectors to deliver the IDUA gene for corrective treatment. Many vectors have difficulties with efficacy and insertional mutagenesis concerns including adeno-associated viral (AAV) vectors. Studies of AAV vectors treating MPS I have seemed promising, but recent deaths in gene therapy clinical trials for other inherited diseases using AAV vectors have left questions about their safety. Additionally, the recent modifications to adenoviral vectors leading them to target the vascular endothelium minimizing the risk of hepatotoxicity could lead to them being a viable option for MPS I gene therapy when coupled with gene editing technologies like CRISPR/Cas9.


Asunto(s)
Edición Génica/métodos , Terapia Genética/métodos , Iduronidasa/genética , Mucopolisacaridosis I/terapia , Animales , Sistemas CRISPR-Cas , Dependovirus/genética , Modelos Animales de Enfermedad , Expresión Génica , Vectores Genéticos/genética , Glicosaminoglicanos/orina , Humanos , Iduronidasa/análisis , Iduronidasa/metabolismo , Mucopolisacaridosis I/patología
12.
Mol Genet Metab Rep ; 28: 100772, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34113546

RESUMEN

INTRODUCTION: Niemann-Pick C (NPC) is an autosomal recessive disease due to defective NPC1 or NPC2 proteins resulting in endo-lysosomal storage of unesterified cholesterol in the central nervous system and liver. Acute liver disease in the newborn period may be self-limited or fatal. 2-hydroxypropyl-ß-cyclodextrin (2HPBCD) is a cholesterol-binding agent that reduces lysosomal cholesterol storage. We have enrolled 3 infants 0-6 months old with direct hyperbilirubinemia due to NPC1 or NPC2 liver disease in a Phase I/II open label clinical trial of intravenous 2HPBCD. METHODS: Infants received intravenous 2HPBCD twice a week for 6 weeks, followed by monthly infusion for 6-months. Primary outcome measure was reduction of plasma (3ß,5α,6ß-trihydroxy-cholan-24-oyl) glycine (TCG), a bile acid generated from cholesterol sequestered in lysosome. RESULTS: Three participants completed this protocol. A fourth patient received intravenous 2HPBCD under an emergency investigational new drug study but later expired from her underlying condition. The three protocol patients are living and have improved liver enzymes and TCG. No patient has experienced a drug-related adverse event. CONCLUSION: Intravenous 2HPBCD was tolerated in three infants with liver disease due to NPC.

13.
Biochem J ; 478(12): 2309-2319, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34032266

RESUMEN

Enzyme replacement therapy (ERT) is a scientifically rational and clinically proven treatment for lysosomal storage diseases. Most enzymes used for ERT are purified from the culture supernatant of mammalian cells. However, it is challenging to purify lysosomal enzymes with sufficient quality and quantity for clinical use due to their low secretion levels in mammalian cell systems. To improve the secretion efficiency of recombinant lysosomal enzymes, we evaluated the impact of artificial signal peptides on the production of recombinant lysosomal enzymes in Chinese hamster ovary (CHO) cell lines. We engineered two recombinant human lysosomal enzymes, N-acetyl-α-glucosaminidase (rhNAGLU) and glucosamine (N-acetyl)-6-sulfatase (rhGNS), by replacing their native signal peptides with nine different signal peptides derived from highly secretory proteins and expressed them in CHO K1 cells. When comparing the native signal peptides, we found that rhGNS was secreted into media at higher levels than rhNAGLU. The secretion of rhNAGLU and rhGNS can, however, be carefully controlled by altering signal peptides. The secretion of rhNAGLU was relatively higher with murine Igκ light chain and human chymotrypsinogen B1 signal peptides, whereas Igκ light chain signal peptide 1 and human chymotrypsinogen B1 signal peptides were more effective for rhGNS secretion, suggesting that human chymotrypsinogen B1 signal peptide is the most appropriate for increasing lysosomal enzyme secretion. Collectively, our results indicate that altering signal peptide can modulate the secretion of recombinant lysosome enzymes and will enable lysosomal enzyme production for clinical use.


Asunto(s)
Acetilglucosaminidasa/metabolismo , Lisosomas/enzimología , Señales de Clasificación de Proteína , Proteínas Recombinantes/metabolismo , Sulfatasas/metabolismo , Acetilglucosaminidasa/genética , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Ratones , Proteínas Recombinantes/genética , Sulfatasas/genética
14.
Mol Genet Metab ; 133(2): 185-192, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33839004

RESUMEN

Mucopolysaccharidosis IIIB (MPS IIIB, Sanfilippo syndrome type B) is caused by a deficiency in α-N-acetylglucosaminidase (NAGLU) activity, which leads to the accumulation of heparan sulfate (HS). MPS IIIB causes progressive neurological decline, with affected patients having an expected lifespan of approximately 20 years. No effective treatment is available. Recent pre-clinical studies have shown that intracerebroventricular (ICV) ERT with a fusion protein of rhNAGLU-IGF2 is a feasible treatment for MPS IIIB in both canine and mouse models. In this study, we evaluated the biochemical efficacy of a single dose of rhNAGLU-IGF2 via ICV-ERT in brain and liver tissue from Naglu-/- neonatal mice. Twelve weeks after treatment, NAGLU activity levels in brain were 0.75-fold those of controls. HS and ß-hexosaminidase activity, which are elevated in MPS IIIB, decreased to normal levels. This effect persisted for at least 4 weeks after treatment. Elevated NAGLU and reduced ß-hexosaminidase activity levels were detected in liver; these effects persisted for up to 4 weeks after treatment. The overall therapeutic effects of single dose ICV-ERT with rhNAGLU-IGF2 in Naglu-/- neonatal mice were long-lasting. These results suggest a potential benefit of early treatment, followed by less-frequent ICV-ERT dosing, in patients diagnosed with MPS IIIB.


Asunto(s)
Acetilglucosaminidasa/genética , Terapia de Reemplazo Enzimático , Factor II del Crecimiento Similar a la Insulina/genética , Mucopolisacaridosis III/terapia , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Perros , Heparitina Sulfato/metabolismo , Humanos , Infusiones Intraventriculares , Ratones , Ratones Noqueados , Mucopolisacaridosis III/enzimología , Mucopolisacaridosis III/genética , Mucopolisacaridosis III/patología , Enfermedades del Sistema Nervioso , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología
15.
Mol Pharm ; 18(1): 214-227, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33320673

RESUMEN

There is currently no cure or effective treatment available for mucopolysaccharidosis type IIID (MPS IIID, Sanfilippo syndrome type D), a lysosomal storage disorder (LSD) caused by the deficiency of α-N-acetylglucosamine-6-sulfatase (GNS). The clinical symptoms of MPS IIID, like other subtypes of Sanfilippo syndrome, are largely localized to the central nervous system (CNS), and any treatments aiming to ameliorate or reverse the catastrophic and fatal neurologic decline caused by this disease need to be delivered across the blood-brain barrier. Here, we report a proof-of-concept enzyme replacement therapy (ERT) for MPS IIID using recombinant human α-N-acetylglucosamine-6-sulfatase (rhGNS) via intracerebroventricular (ICV) delivery in a neonatal MPS IIID mouse model. We overexpressed and purified rhGNS from CHO cells with a specific activity of 3.9 × 104 units/mg protein and a maximal enzymatic activity at lysosomal pH (pH 5.6), which was stable for over one month at 4 °C in artificial cerebrospinal fluid (CSF). We demonstrated that rhGNS was taken up by MPS IIID patient fibroblasts via the mannose 6-phosphate (M6P) receptor and reduced intracellular glycosaminoglycans to normal levels. The delivery of 5 µg of rhGNS into the lateral cerebral ventricle of neonatal MPS IIID mice resulted in normalization of the enzymatic activity in brain tissues; rhGNS was found to be enriched in lysosomes in MPS IIID-treated mice relative to the control. Furthermore, a single dose of rhGNS was able to reduce the accumulated heparan sulfate and ß-hexosaminidase. Our results demonstrate that rhGNS delivered into CSF is a potential therapeutic option for MPS IIID that is worthy of further development.


Asunto(s)
Mucopolisacaridosis III/tratamiento farmacológico , Proteínas Recombinantes/farmacología , Sulfatasas/farmacología , Animales , Animales Recién Nacidos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células CHO , Cricetulus , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático/métodos , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico , Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Mucopolisacaridosis III/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Receptor IGF Tipo 2/metabolismo
16.
JIMD Rep ; 56(1): 40-45, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33204595

RESUMEN

Long-chain fatty-acyl CoA dehydrogenase deficiency (LCHADD) is an inborn error of long chain fatty acid oxidation with various features including hypoketotic hypoglycemia, recurrent rhabdomyolysis, pigmentary retinopathy, peripheral neuropathy, cardiomyopathy, and arrhythmias. Various stresses trigger metabolic decompensation. Coronavirus disease 2019 (COVID-19) is a pandemic caused by the RNA virus SARS-CoV-2 with diverse presentations ranging from respiratory symptoms to myocarditis. We report a case of a patient with LCHADD who initially presented with typical metabolic decompensation symptoms including nausea, vomiting, and rhabdomyolysis in addition to mild cough, and was found to have COVID-19. She developed acute respiratory failure and refractory hypotension from severe cardiomyopathy which progressed to multiple organ failure and death. Our case illustrates the need for close monitoring of cardiac function in patients with a long-chain fatty acid oxidation disorder.

17.
Lipids ; 55(6): 627-637, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32537944

RESUMEN

Mucopolysaccharidosis type I (MPS I) is a lysosomal disease with progressive central nervous system involvement. This study examined the lipid, cholesterol, and myelin basic protein composition of white matter in the corpus callosum of MPS I mice. We studied 50 week-old, male MPS I mice and littermate, heterozygote controls (n = 12 per group). Male MPS I mice showed lower phosphatidylcholine and ether-linked phosphatidylcholine quantities than controls (p < 0.05). Twenty-two phospholipid or ceramide species showed significant differences in percent of total. Regarding specific lipid species, MPS I mice exhibited lower quantities of sphingomyelin 18:1, phosphatidylserine 38:3, and hexosylceramide d18:1(22:1) mH2 O than controls. Principal components analyses of polar, ceramide, and hexosylceramide lipids, respectively, showed some separation of MPS I and control mice. We found no significant differences in myelin gene expression, myelin basic protein, or total cholesterol in the MPS I mice versus heterozygous controls. There was a trend toward lower proteolipid protein-1 levels in MPS I mice (p = 0.06). MPS I mice show subtle changes in white matter composition, with an unknown impact on pathogenesis in this model.


Asunto(s)
Cuerpo Calloso/química , Lípidos/análisis , Lípidos/química , Mucopolisacaridosis I/patología , Vaina de Mielina/química , Animales , Estudios de Casos y Controles , Colesterol/análisis , Colesterol/metabolismo , Cuerpo Calloso/patología , Femenino , Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mucopolisacaridosis I/metabolismo , Proteína Básica de Mielina/análisis , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/genética , Vaina de Mielina/patología
18.
Clin Chim Acta ; 508: 179-184, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32442432

RESUMEN

AIMS: To validate a liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the measurement of glycosaminoglycans (GAGs) in plasma and serum. To establish plasma, cerebrospinal fluid (CSF) and urine reference intervals. To compare GAGs in serum with that in urine and CSF from patients with MPS I. METHODS: Dermatan sulfate (DS), heparan sulfate (HS), and chondroitin sulfate (CS) in serum/plasma, urine and CSF were methanolysed into dimers and analyzed using pseudo isotope dilution UPLC-MS/MS assay. Serum, CSF and urine DS and HS were quantified for 11 patients with mucopolysaccharidosis (MPS) type I before and after treatment with Aldurazyme® (laronidase) enzyme replacement therapy (ERT). RESULTS: The method showed acceptable imprecision and recovery for the quantification of serum/plasma CS, DS, and HS. The serum, urine, and CSF DS and HS concentrations were reduced after 26 weeks of ERT in 4 previously untreated patients. Serum DS and HS concentrations normalized in some patients, and were mildly elevated in others after ERT. In contrast, urine and CSF DS and HS values remained elevated above the reference ranges. Compared with serum GAGs, urine and CSF DS and HS were more sensitive biomarkers for monitoring the ERT treatment of patients with MPS I.


Asunto(s)
Dermatán Sulfato , Mucopolisacaridosis I , Cromatografía Liquida , Terapia de Reemplazo Enzimático , Glicosaminoglicanos , Heparitina Sulfato , Humanos , Mucopolisacaridosis I/tratamiento farmacológico , Espectrometría de Masas en Tándem
19.
Am J Med Genet A ; 182(5): 1053-1065, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32083401

RESUMEN

Pathogenic variants in KMT2D, which encodes lysine specific methyltransferase 2D, cause autosomal dominant Kabuki syndrome, associated with distinctive dysmorphic features including arched eyebrows, long palpebral fissures with eversion of the lower lid, large protuberant ears, and fetal finger pads. Most disease-causing variants identified to date are putative loss-of-function alleles, although 15-20% of cases are attributed to missense variants. We describe here four patients (including one previously published patient) with de novo KMT2D missense variants and with shared but unusual clinical findings not typically seen in Kabuki syndrome, including athelia (absent nipples), choanal atresia, hypoparathyroidism, delayed or absent pubertal development, and extreme short stature. These individuals also lack the typical dysmorphic facial features found in Kabuki syndrome. Two of the four patients had severe interstitial lung disease. All of these variants cluster within a 40-amino-acid region of the protein that is located just N-terminal of an annotated coiled coil domain. These findings significantly expand the phenotypic spectrum of features associated with variants in KMT2D beyond those seen in Kabuki syndrome and suggest a possible new underlying disease mechanism for these patients.


Asunto(s)
Anomalías Múltiples/genética , Mama/anomalías , Anomalías Congénitas/genética , Proteínas de Unión al ADN/genética , Cara/anomalías , Predisposición Genética a la Enfermedad , Enfermedades Hematológicas/genética , Proteínas de Neoplasias/genética , Enfermedades Vestibulares/genética , Anomalías Múltiples/diagnóstico por imagen , Anomalías Múltiples/patología , Adolescente , Adulto , Mama/diagnóstico por imagen , Mama/fisiopatología , Enfermedades de la Mama , Niño , Anomalías Congénitas/diagnóstico por imagen , Anomalías Congénitas/fisiopatología , Cara/diagnóstico por imagen , Cara/patología , Femenino , Enfermedades Hematológicas/diagnóstico por imagen , Enfermedades Hematológicas/patología , Humanos , Mutación con Pérdida de Función/genética , Masculino , Mutación/genética , Fenotipo , Enfermedades Vestibulares/diagnóstico por imagen , Enfermedades Vestibulares/patología , Secuenciación del Exoma , Adulto Joven
20.
Mol Genet Metab ; 129(2): 80-90, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31839529

RESUMEN

Central nervous system manifestations of mucopolysaccharidosis type I (MPS I) such as cognitive impairment, hydrocephalus, and spinal cord compression are inadequately treated by intravenously-administered enzyme replacement therapy with laronidase (recombinant human alpha-L-iduronidase). While hematopoietic stem cell transplantation treats neurological symptoms, this therapy is not generally offered to attenuated MPS I patients. This study is a randomized, open-label, controlled pilot study of intrathecal laronidase in eight attenuated MPS I patients with cognitive impairment. Subjects ranged between 12 years and 50 years old with a median age of 18 years. All subjects had received intravenous laronidase prior to the study over a range of 4 to 10 years, with a mean of 7.75 years. Weekly intravenous laronidase was continued throughout the duration of the study. The randomization period was one year, during which control subjects attended all study visits and assessments, but did not receive any intrathecal laronidase. After the first year, all eight subjects received treatment for one additional year. There was no significant difference in neuropsychological assessment scores between control or treatment groups, either over the one-year randomized period or at 18 or 24 months. However, there was no significant decline in scores in the control group either. Adverse events included pain (injection site, back, groin), headache, neck spasm, and transient blurry vision. There were seven serious adverse events, one judged as possibly related (headache requiring hospitalization). There was no significant effect of intrathecal laronidase on cognitive impairment in older, attenuated MPS I patients over a two-year treatment period. A five-year open-label extension study is underway.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Terapia de Reemplazo Enzimático/métodos , Inyecciones Espinales , Mucopolisacaridosis I/complicaciones , Adolescente , Adulto , Niño , Disfunción Cognitiva/etiología , Terapia de Reemplazo Enzimático/efectos adversos , Femenino , Humanos , Iduronidasa/efectos adversos , Iduronidasa/uso terapéutico , Masculino , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos , Proteínas Recombinantes/efectos adversos , Proteínas Recombinantes/uso terapéutico , Proyectos de Investigación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...